1 Fig. 8 shows part of the curve $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=\left(\mathrm{e}^{x}-1\right)^{2} \text { for } x \geqslant 0
$$

Fig. 8
(i) Find $\mathrm{f}^{\prime}(x)$, and hence calculate the gradient of the curve $y=\mathrm{f}(x)$ at the origin and at the point $(\ln 2,1)$.

The function $\mathrm{g}(x)$ is defined by $\sqrt{ } \quad$ for $x \geqslant 0$.
(ii) Show that $\mathrm{f}(x)$ and $\mathrm{g}(x)$ are inverse functions. Hence sketch the graph of $y=\mathrm{g}(x)$.

Write down the gradient of the curve $y=\mathrm{g}(x)$ at the point $(1, \ln 2)$.
(iii) Show that $\int\left(\begin{array}{ll}\mathrm{e}^{x} & 1\end{array}\right)^{2} \mathrm{~d} x=\frac{1}{2} \mathrm{e}^{2 x} \quad 2 \mathrm{e}^{x}+x+c$.

Hence evaluate $\int_{0}^{\ln 2}\left(\begin{array}{ll}\mathrm{e}^{x} & 1\end{array}\right)^{2} \mathrm{~d} x$, giving your answer in an exact form.
(iv) Using your answer to part (iii), calculate the area of the region enclosed by the curve $y=\mathrm{g}(x)$, the x-axis and the line $x=1$.

2 Fig. 6 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{1}{2} \arctan x$.

Fig. 6
(i) Find the range of the function $\mathrm{f}(x)$, giving your answer in terms of π.
(ii) Find the inverse function $\mathrm{f}^{-1}(x)$. Find the gradient of the curve $y=\mathrm{f}^{-1}(x)$ at the origin. [5]
(iii) Hence write down the gradient of $y=\frac{1}{2} \arctan x$ at the origin.

3 The function $f(x)=\ln \left(1+x^{2}\right)$ has domain $-3 \leqslant x \leqslant 3$.
Fig. 9 showx the graph of $y=f(x)$.

Fig. 9
(i) Show algebraically that the function is even. State how this property retates to the shape of the curve.
(ii) Find the gradient of the curve at the point $P(2, \ln 5)$.
(iii) Explain why the function does not have an inverse for the domain $-3 \leqslant x \leqslant 3$.

The domain of $\mathrm{f}(x)$ is now restricted to $0 \leqslant x \leqslant 3$. The inverse of $f(x)$ is the function $g(x)$,
(iv) Sketch the curves $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ on the same axes.

State the domain of the function $\mathrm{g}(x)$.
Show that $\mathrm{g}(x)=\sqrt{\mathrm{e}^{x}-1}$.
(v) Differentiate $\mathrm{g}(x)$. Hence verify that $\mathrm{g}^{\prime}(\ln 5)=1 \frac{1}{4}$. Explain the connection between this result and your answer to part (iii).

